President's Information Technology Advisory Committee

Scalable Information Infrastructure

Les Vadasz, Chair

Steve Dorfman

Dave Dorman

Danny Hillis

Dave Nagel

February 17, 1999

Since We Met Last Time...

- Made November 1998 suggested updates
- Resulting draft was network-centric, did not discuss software
- Further efforts on scalability, software, and budget
- Added scalability-specific software recommendations
- Added funding guidance
- Result: Three findings, six recommendations

SII Findings

- 1. Our Nation's dependence on the Internet as the basis for its information infrastructure continues to grow at a dramatic rate.
- 2. The Internet is growing well beyond the intent of its original designers, to such an extent that we no longer understand it and cannot confidently continue to extend it.
- 3. Learning how to build and use large, complex, highly-reliable and secure systems requires research.

Finding #1: Our Nation's dependence on the Internet as the basis for its information infrastructure continues to grow at a dramatic rate.

- The Internet is increasingly becoming an integral part of our daily lives.
- The information infrastructure is becoming critical to our Nation's well being.
- Like our electricity system, we must be able to manage and control it.
- America leads the world in these technologies. It's crucial to continue investing to maintain our leadership position.

Finding #2: The Internet is growing well beyond the intent of its original designers, to such an extent that we no longer understand it and cannot confidently continue to extend it.

- The Internet is growing to a size that we have never seen before (from 2K devices in 1985 to >50M today).
- The Internet is growing in capabilities:
 - Anytime, anywhere communications
 - Electronic commerce
 - Streaming audio and video
 - Building blocks for new applications, e.g. digital signatures, shared environments
- Extending the Internet is challenging.
 - A network of this size and complexity hasn't been built.
 - We need reliability equal to or better than the phone system.

Finding #3:Learning how to build and use large, complex, highly-reliable, and secure systems requires research.

- Need to analyze this large, complex system to better understand its behavior
- Need to develop revolutionary new networking research ideas to keep up with Internet growth > Moore's law
- Scaling advances needed in multiple dimensions:
 - High speed, quality of service, ubiquitous access, infrastructure services, security, servers accessing exabyte data stores
- Research should encompass the complete end-to-end system

SII Recommendations (1)

- 1. Fund research in global-scale network behavior, including collecting and analyzing performance data analysis/collection, and as well as modeling and simulating network behavior
- 2. Support research on the physics of the network, including optical, wireless technologies including satellite, and bandwidth issues
- 3. Support research to anticipate and plan for scaling the Internet

SII Recommendations (2)

- 4. Support research on middleware that enables large scale systems
- 5. Support research on large scale applications and the scalable services they require
- 6. Fund a balanced set of testbeds that serve the needs of networking research as well as research in enabling information technologies and advanced applications

Recommendation #1: Fund research in the behavior of the global-scale network. This should include collecting and analyzing performance data as well as modeling and simulating network behavior.

- Mathematical models for telephony took over 30 years to develop, and they don't apply to the Internet
- Telephony an effective Internet deployment vehicle today, but differences limit future deployment ability
 - IP vs. switched networks, wide-range of applications vs. voice,
 wireline/wireless/cable/broadcast vs. twisted pair, wider
 performance range, broader statistical distribution characteristics
- Must develop new models and simulation methods
- Will require data sharing among network service providers

Recommendation #2: Support research on the physics of the network, including optical, wireless technologies including satellite, and bandwidth issues

- Improving transmission technologies profoundly impacts infrastructure capability
- Requires research in physical and signal processing: waveforms, signal quality, and manufacturing techniques
- Pressing issues: optical, wireless, and local-loop transmission

Recommendation #3: Support research to anticipate and plan for scaling the Internet

- #1 problem on the Internet today is scalability
 - # nodes, # users
 - Geographic dispersion
 - Heterogeneity of the networking environment and end nodes
 - New traffic types such as voice and streamed content
 - Availability, bandwidth, efficiency, reliability, security
 - New features, uses, and applications
- How can we design, build, test, manage, and evolve a network that's 10,000 times larger than today's Internet?

Recommendation #4: Support research on middleware that enables large scale systems

- Middleware: shared software that improves software development, helps the infrastructure run efficiently, makes large software systems possible
- Example: network aware applications
- Focus middleware research on:
 - Information management
 - Managing and presenting data, monitoring resources, integrating data from diverse sources, tracking information lineage, controlling access,...
 - Information services and survivability
 - Authentication and security, detecting intrusion, preventing human errors, long-term information preservation

Recommendation #5: Support research on large scale applications and the scalable services they require

- Very large applications have unique scalability needs that today's technology can't meet, e.g., scalable application development and quality control.
- Example applications: DOE nuclear stockpile stewardship, NASA EOSDIS Earth sensing database, FAA air traffic control system
- Large applications will be common in 20 years
- Potentials applications that can drive this research:
 - National Digital Library
 - Next Generation World Wide Web

Recommendation #6: Fund a balanced set of testbeds that serve the needs of networking research as well as research in enabling information technologies and advanced applications

- Distinguish between two types of testbeds
- 100X: primarily for "revolutionary" applications
 - Connects several Federal research networks: NSF's vBNS, DOE's ESnet, NASA's NREN, DoD's DREN.
 - Users expect high availability, performance
- 1000X: primarily for networking research
 - Stresses new technologies
 - More fragile, may experience outages
- Recommend periodic review of testbed activities
 - Ensure funding/usage consistent with original intent
 - Review participation by all appropriate parties
 - Costs for 100X testbed to be shared with applications communities

Recommended Funding Levels

- Current SII funding estimated @ \$200M annually, about equally divided between network research and testbeds (exclusive of applications)
- Recommend linear increase from \$200M to \$500M between FY2000 and FY2004
- Emphasis on networking research (3/2 ratio)
- Relative project ratios estimated from a bottom up approach: 1 large (>\$4M): 4 medium (\$1-2M): 20 small (\$100K-200K).
- Also fund two networking expedition centers for \$5M/each

Funding Observations

- \$300M = 19 large, 75 medium, and 375 small projects
- ~100⁺ upper-tier research universities
- ~50+ universities doing networking research
 - 375/50 = ~7 projects/university
- → 75% of \$ goes to medium/large projects
- → # of small projects limited by # researchers